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Abstract

We describe an O(nd) time algorithm for computing
the exact probability that two probabilistic point sets
are linearly separable in dimension d ≥ 2, and prove
its hardness via reduction from the k-SUM problem.
We also show that d-dimensional separability is com-
putationally equivalent to a (d+ 1)-dimensional con-
vex hull membership problem.

1 Introduction

We consider the problems of linear separability and
convex hull membership for probabilistic point sets,
where a probabilistic point is a tuple (p, π) consisting
of a point p ∈ IRd and its associated probability of
existence π. This abstract representation is a con-
venient way to model data uncertainty in a number
of applications including uncertain databases, sensor
networks, data cleansing, scientific computing, and
machine learning [4, 5]. We present algorithms and
hardness results for computing the exact probability
that two such probabilistic sets in IRd are linearly sep-
arable (separability problem) or that a point lies in-
side the convex hull of a probabilistic set (convex hull
membership problem). Specifically, our results include
the following.

1. An O(nd) time and O(n) space algorithm for
computing the probability of separation of two
probabilistic point sets with a total of n points
in d dimensions, for d ≥ 2.

2. A reduction from the k-SUM problem to the d-
dimensional separability problem, for k = d + 1,
as evidence that our O(n2) bound for d = 2 may
be almost tight. We also prove #P -hardness of
the problem when d = Ω(n).

3. A linear-time reduction between the convex hull
membership problem in d-space and the separa-
bility problem in dimension (d− 1).

4. Finally, related problems such as probability of
non-empty intersection among n probabilistic
halfspaces can also be solved in O(nd) time. We
also show how to extend our result to point sets
containing degeneracies.

∗An expanded version of this work appears in [7].
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Related work. The topic of algorithms for prob-
abilistic (uncertain) data is a subject of extensive
and ongoing research in many areas of computer sci-
ence including databases, data mining, machine learn-
ing, combinatorial optimization, theory, and compu-
tational geometry. Within computational geometry
and databases, a number of papers address nearest
neighbor searching, minimum spanning trees, Voronoi
diagrams, indexing and skyline queries under the
probabilistic model of our paper as well as the lo-
cational uncertainty model [1, 2, 10, 11, 13, 12]. Our
convex hull membership bound improves upon a re-
cent result of [3], both in time complexity and elimi-
nation of the non-degeneracy assumption.

2 Separability of Probabilistic Point Sets

2.1 Preliminaries

Let A and B be two probabilistic point sets in IRd

with a total of n points. For notational convenience,
we denote a generic probabilistic point as p with the
implicit understanding that π(p) is the probability as-
sociated with p and that all the point probabilities are
independent. By the independence of probabilities, a
subset A occurs as a random sample of A with prob-
ability

Pr
[
A
]

=
∏
p∈A

π(p) ·
∏

p∈A\A

(1− π(p)).

We say that the subsets A ⊆ A and B ⊆ B are lin-
early separable if there is a hyperplane H containing
A and B in opposite (open) halfspaces. (The open
halfspace separation means that no point of A ∪ B
lies on H, thus enforcing a strict separation.) Define
an indicator function σ(A,B) for linear separability

σ(A,B) =

{
1 if A,B are linearly separable

0 otherwise,

with σ(∅, ∅) = 1 to handle the trivial case. Then the
separation probability of A and B is the joint sum over
all possible samples:

Pr
[
σ(A,B)

]
=

∑
A⊆A,B⊆B

Pr
[
A
]
·Pr

[
B
]
· σ(A,B)

This is also the expectation of the random variable
σ(A,B). We are interested in the complexity of com-
puting this quantity exactly.
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2.2 Reduction to Anchored Separability

There are O(nd) combinatorially distinct separating
hyperplanes induced by A ∪ B, so a natural idea is
to decompose the sum into probabilities over these
planes. However, many different hyperplanes may
be separating for the same sample pair, so we must
avoid over-counting by assigning each pair to a unique
canonical hyperplane.1 Our main insight is the follow-
ing: if we introduce an extra point z into the input,
then the canonical hyperplane can be defined uniquely
(and computed efficiently) with respect to z. We call
this additional point z the anchor point.

We initially assume that the input points are in gen-
eral position, and choose z above (in the dth coordi-
nate) all the input points and in general position with
respect to A∪B. The non-degeneracy assumption can
be eliminated, as briefly explained in Section 5. We
assign π(z) = 1 so that the anchor is always included
in the sample.

If A ⊆ A and B ⊆ B are two random samples and
H a hyperplane separating them, then z lies either (i)
on the same side as A, (ii) on the same side as B, or
(iii) on the hyperplane H. The following lemma shows
that case (iii) precisely counts the double-counting be-
tween cases (i) and (ii).

Lemma 1 There exist separating hyperplanes
H1, H2 with z lying on the same side of H1 as A
but on the same side of H2 as B if and only if there
is another hyperplane H that passes through z and
separates A from B.

Let P + z be the shorthand for the probabilistic
point set P ∪ {z}, with π(z) = 1. Let Pr

[
σ(z,A,B)

]
denote the probability that sets A and B are linearly
separable by a hyperplane passing through z. By the
preceding lemma, we have the following.

Lemma 2 Given two probabilistic point sets A and
B, we have the following equality:

Pr
[
σ(A,B)

]
= Pr

[
σ(A+ z,B)

]
+ Pr

[
σ(A,B + z)

]
− Pr

[
σ(z,A,B)

]
.

Computing Pr
[
σ(A + z,B)

]
and Pr

[
σ(A,B + z)

]
requires solving two instances of anchored separability,
once with z included in A and once in B, and this is
the problem we solve in the following subsection. The
calculation of the remaining term Pr

[
σ(z,A,B)

]
can

be reduced to an instance of separability in dimension
d− 1, as shown below.

Consider any sample A ⊆ A and B ⊆ B. We
centrally project all these points onto the hyperplane
xd = 0 from the anchor point z: the image of a point

1Dualizing the points to hyperplanes can simplify the enu-
meration of separating planes for the summation but does not
address the over-counting problem.

p ∈ IRd is the point p′ ∈ IRd−1 at which the line con-
necting z to p intersects the hyperplane xd = 0. All
points of A∪B have a well-defined projection because
z lies above all of them.

Lemma 3 Let A ⊆ A and B ⊆ B be two sample
sets, and let A′, B′ be their projections onto xd = 0
with respect to z. Then A and B are separable by a
hyperplane passing through z if and only if A′ and B′

are linearly separable in xd = 0.

3 Computing Anchored Separability

We now describe our main technical result, namely,
how to compute the probability of anchored separa-
bility Pr

[
σ(A + z,B)

]
. Given a hyperplane H, we

can easily compute the probability that A+ z lies in
H+ and B lies in H−. The separation probabilities
for different hyperplanes, however, are not indepen-
dent, and so our algorithm “assigns” each separable
sample to a unique hyperplane, which geometrically
is the hyperplane that separates A+z from B and lies
at maximum distance from the anchor z. We intro-
duce the concept of a shadow cone to formalize these
canonical hyperplanes (see Fig. 1).

C(A,B)

Figure 1: A shadow cone in two dimensions.

Given two points u, v ∈ IRd, let shadow(u, v) =
{λv + (1 − λ)u | λ ≥ 1} be the ray originating at v
and directed along the line uv away from u. Given two
sets of points A and B, with A∩B = ∅, we define their
shadow cone C(A,B) as the union of shadow(u, v) for
all u ∈ CH (A) and v ∈ CH (B), where CH () denotes
the convex hull.

C(A,B) is a (possibly unbounded) convex polytope,
each of whose faces is defined by a subset of (at most
d) points in A∪B, and the defining set always includes
at least one point of B. The following lemma states
the important connection between the shadow cone
and hyperplane separability.

Lemma 4 A+z and B can be separated by a hyper-
plane if and only if z 6∈ C(A,B).

3.1 Canonical Separating Hyperplanes

Since C(A,B) is a convex set, there is a unique nearest
point p = np(z,C(A,B)) on the boundary of C(A,B)
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with minimum distance to z. We define our canonical
hyperplane H(z,A,B) as the one that passes through
p and is orthogonal to the vector p− z. The following
lemma states the definition of canonical separators.

Lemma 5 Let C be a d-dimensional convex polyhe-
dron, z a point not contained in C, and p the point
of C at minimum distance from z. If p lies in the rel-
ative interior of the face F of C, then the hyperplane
H through p that is orthogonal to p − z contains F .
This hyperplane contains C in one of its closed halfs-
paces, and is the hyperplane farthest from z with this
property.

We turn the separation question around and instead
of asking “which hyperplane separates a particular
sample pair A,B,” we ask “for which pairs of samples
A,B is H a canonical separator?” The latter formu-
lation allows us to compute the separation probability
Pr
[
σ(A+z,B)

]
by considering at most O(nd) possible

hyperplanes.

3.2 The Algorithm

Our algorithm enumerates all subsets I ⊆ A and J ⊆
B, with |I ∪ J | ≤ d and |J | ≥ 1, and assigns to the
hyperplane H(z, I, J) the separation probability of all
those samples A∪B that are separable and for which
H(z, I, J) is the canonical separator H(z,A,B). Let
Pr
[
H(z, I, J)

]
denote the probability that the points

defining the hyperplane H(z, I, J) are in the sample
and none of the remaining points of A ∪ B lies on its
incorrect side. Then, it’s easy to check that

Pr
[
H(z, I, J)

]
=

∏
u∈I∪J

π(u)×
∏

u∈A∩H−

(1− π(u))

×
∏

u∈B∩H+

(1− π(u)).

The pseudo-code below describes our algorithm.

Algorithm AnchoredSep:

Input: The point sets A+ z and B
Output: Their separation probability

α = Pr
[
σ(A+ z,B)

]
α =

∏
u∈B(1− π(u)) ;

forall the
I ⊆ A, J ⊆ B where |I ∪ J | ≤ d, J 6= ∅ do

let p = np(z,C(I, J));
if p lies in the relative interior of C(I, J)
then

α = α+ Pr
[
H(z, I, J)

]
;

end

end
return α;

Theorem 6 AnchoredSep correctly computes the
probability Pr

[
σ(A+ z,B)

]
.

A näıve implementation of AnchoredSep runs in
O(nd+1) time and O(n) space, but it can be improved
to O(nd) time using duality and topological sweep.

Theorem 7 Let A,B ⊆ IRd be two probabilistic sets
of n points in general position, for d ≥ 2. We can
compute their probability of hyperplane separation
Pr
[
σ(A,B)

]
in O(nd) worst-case time.

4 Lower Bounds

We now argue that the separability problem is at least
as hard as the k-SUM problem for k = d+ 1, for any
fixed d. We also show that the problem is #P -hard
when d = Ω(n).

The k-SUM problem is a generalization of 3-SUM,
which is a classical hard problem in computational
geometry [8, 9]. We use the following variant: Given
k sets containing a total of n real numbers, grouped
into a single set Q and k − 1 sets R1, R2, . . . , Rk−1,
determine whether there exist k − 1 elements ri ∈
Ri, one per set Ri, and an element q ∈ Q such that∑k−1

i=1 ri = q. We have the following result.

Theorem 8 The d-dimensional hyperplane separa-
bility problem is at least as hard as (d+ 1)-SUM.

The problem is #P -hard for d = Ω(n).

Lemma 9 ComputingPr
[
σ(A,B)

]
is #P -hard if the

dimension d is not a constant.

Proof. We reduce the #P -hard problem of counting
independent sets in a graph [14] to the separability
problem. Consider an undirected graph G = (V,E)
on the vertex set {1, 2, . . . , n}. For each i, we con-
struct an n-dimensional point ai = (0, . . . , 1, . . . , 0),
namely, the unit vector along the ith axis. The col-
lection of points {a1, . . . , ai, . . . , an}, each with asso-
ciated probability πi = 1/2, is our point set A. Next,
for each edge e = (i, j) ∈ E, we construct a point
bij at the midpoint of the line segment connecting
ai and aj . The set of points bij , each with associ-
ated probability 1, is the set B. It is easy to see that
there is a one-to-one correspondence between separa-
ble subsets of A ∪ B and the independent sets of G.
Each separable sample occurs precisely with proba-
bility (1/2)n, and therefore we can count the number
of independent sets using the separation probability
Pr
[
σ(A,B)

]
. �

5 Handling Input Degeneracies

We deal with degenerate inputs through a problem-
specific symbolic perturbation within the framework
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of Simulation of Simplicity [6]. We convert degener-
ate non-separable samples into non-degenerate sam-
ples that are still non-separable. We first choose the
anchor z above all points in P = A ∪ B and outside
the affine span of every d-tuple of P. For each a ∈ A,
we define a perturbed point a′ = a + ε · (a − z), and
for each b ∈ B, define b′ = b+ ε · (z − b), where ε > 0
is infinitesimally small. Let A′,B′ be the sets of per-
turbed points corresponding to A and B. We prove
that A + z and B are strictly separable by a hyper-
plane if and only if A′ + z and B′ are. Furthermore,
if some hyperplane H with z /∈ H is a non-strict sep-
arator of A′ + z and B′ for some ε, then H is a strict
separator for any ε0 < ε.

6 Convexity and Related Problems

Given a probabilistic set of points P, the convex hull
membership probability of a query point z is the prob-
ability that z lies in the convex hull of P. We write
this as Pr

[
z ∈ CH (P)

]
=
∑

P⊆P, z∈CH (P ) Pr
[
P
]
.

Without loss of generality, assume that the query
point is z = (0, 0, . . . , 1), and define the central pro-
jection of p ∈ P as the point p′ at which the line pz
meets the plane xd = 0. Let the set A (resp. B) be
the central projections of all those points in P with
xd > 1 (resp. with xd < 1), where each point inherits
the associated probability of its corresponding point
in P. The sets A and B are (d−1)-dimensional prob-
abilistic points, with |A| + |B| = n. We show the
following equality

Pr
[
z ∈ CH (P)

]
= 1−Pr

[
σ(A,B)

]
,

which proves that d-dimensional convex hull member-
ship can be computed in the same time bound as the
(d−1)-dimensional separability. Similarly, the proba-
bility that n probabilistic halfspaces have non-empty
intersection can be computed in the same time bound
as d-dimensional separability.

7 Concluding Remarks

We considered the problem of hyperplane separabil-
ity for probabilistic point sets. Our main result is
that, given two sets of n probabilistic points in IRd,
we can compute in O(nd) time the exact probabil-
ity that their random samples are linearly separable.
The same technique and result lead to similar bounds
for several other problems, including the probability
that a query point lies inside the convex hull of n
probabilistic points, or the probability that n prob-
abilistic halfspaces have non-empty intersection. We
also proved that the d-dimensional separability prob-
lem is at least as hard as the (d + 1)-SUM prob-
lem [8, 9], which implies that our O(n2) algorithms
for 2-dimensional separability or 3-dimensional con-
vex hull membership are nearly optimal.
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