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Finding Plurality Points in Rd∗

Mark de Berg† Joachim Gudmundsson‡ Mehran Mehr§

Abstract

Let V be a set of n points in Rd, which we call voters,
where d is a fixed constant. A point p ∈ Rd is pre-
ferred over another point p′ ∈ Rd by a voter v ∈ V if
dist(v, p) < dist(v, p′). A point p is called a plurality
point if it is preferred by at least as many voters as
any other point p′.

We present an algorithm that decides in O(n log n)
time whether V admits a plurality point in the L2

norm and, if so, finds the (unique) plurality point.

1 Introduction

We study computational problems concerning plurality
points, a concept arising in social choice and voting
theory, defined as follows. Let V be a set of n voters
and let C be a space of possible choices. Each voter
v ∈ V has a utility function indicating how much v
likes a certain choice. Thus the utility function of v
determines for any two choices from C which one is
preferred by v or whether both choices are equally
preferable. A (weak) plurality point is now defined
as a choice p ∈ C such that no alternative p′ ∈ C is
preferred by more voters.

When there are different issues on which the vot-
ers can decide, then the space C becomes a multi-
dimensional space. This has led to the study of plu-
rality points in the setting where C = Rd and each
voter has an ideal choice which is a point in Rd. To
simplify the presentation, from now on we will not
distinguish the voters from their ideal choice and so
we view each voter v ∈ V as being a point in Rd, the
so-called spatial model in voting theory [10]. Thus
the utility of a point p ∈ Rd for a voter v is inversely
proportional to dist(v, p), the distance from v to p un-
der a given distance function, and v prefers a point p
over a point p′ if dist(v, p) < dist(v, p′). Now a point
p ∈ Rd is a plurality point if for any point p′ ∈ Rd
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we have |{v ∈ V : dist(v, p) < dist(v, p′)}| > |{v ∈ V :
dist(v, p′) < dist(v, p)}|.

Plurality points and related concepts were already
studied in the 1970s in voting theory [4, 6, 7, 10, 12].
McKelvey and Wendell [10] define three different no-
tions of plurality points—majority Condorcet, plural-
ity Condorcet, and majority core—and for each notion
they define a weak and a strong variant. Under certain
assumptions on the utility functions, which are satis-
fied for the L2 norm, the three notions are equivalent.
Thus for the L2 norm we only have two variants: weak
plurality points (which should be at least as popular
as any alternative) and strong plurality points (which
should be strictly more popular than any alternative).
We focus on weak plurality points, since they are more
challenging from an algorithmic point of view. From
now on, whenever we speak of plurality points we refer
to weak plurality points.

Plurality points represent a stable choice with re-
spect to the opinions of the voters. One can also look
at the concept from the viewpoint of competitive facil-
ity location. Here one player wants to place a facility
in the space C such that she always wins at least as
many clients (voters) as her competitor, no matter
where the competitor places his facility. Competitive
facility location problems have been studied widely in
a discrete setting, where the clients and the possible
locations for the facilities are nodes in a network; see
the survey by Kress and Pesch [8]. Competitive facility
location has also been studied in a geometric, continu-
ous setting under the name Voronoi games [1, 3]. Here
one is given a region R in R2, say the unit square, and
the goal is to win the maximum area within R. In
other words, the set V of voters is no longer finite, but
we have V = C = R. The plurality-point problem in
a geometric space lies in between the network setting
and the fully continuous setting: the space C of choices
is Rd, but the set V of voters is finite.

When the L2 norm defines the distance between
voters and potential plurality points, then plurality
points can be defined in terms of Tukey depth [11].
The Tukey depth of a point p ∈ Rd with respect to
a given set V of n points is defined as the minimum
number of points from V lying in any closed halfspace
containing p. A point of maximum Tukey depth is
called a Tukey median. It is known that for any set V ,
the depth of the Tukey median is at least dn/(d+ 1)e
and at most dn/2e. Wu et al. [13] showed that a
point p ∈ Rd is a plurality point in the L2 norm if
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and only if any open halfspace with p on its boundary
contains at most n/2 voters. This is equivalent to
saying that the Tukey depth of p is dn/2e. They used
this observation to present an algorithm that decides
in O(nd−1 log n) time if a given set V of n voters in
Rd admits a plurality point with respect to the L2

norm and, if so, finds such a point. A slightly better
result can be obtained using a randomized algorithm
by Chan [2], which computes a Tukey median (together
with its depth) in O(n log n+ nd−1) time.

Our results. Currently the fastest algorithm for
deciding whether a plurality point exists runs in
O(n log n+ nd−1) randomized time and actually com-
putes a Tukey median. However, in the case of plural-
ity points we are only interested in the Tukey median
if its depth is the maximum possible, namely dn/2e.
Wu et al. [13] exploited this to obtain a determinis-
tic algorithm, but their running time is O(nd−1 log n).
This raises the question: can we decide whether a plu-
rality point exists faster than by computing the depth
of the Tukey median? We show that this is indeed
possible: we present a deterministic algorithm that
decides if a plurality point exists (and, if so, computes
one) in O(n log n) time.

2 Plurality points in the L2 norm

Let V be a set of n voters in Rd. In this section we
show how to compute a plurality point for V with
respect to the L2 norm in O(n log n) time, if it exists.
We start by proving several properties of the plurality
point in higher dimensions, which generalize similar
properties that Lin et al. [9] proved in R2. These
properties imply that if a plurality point exists, it is
unique (unless all points are collinear). Our algorithm
then consists of two steps: first it computes a single
candidate point p ∈ Rd, and then it decides if p is a
plurality point.

2.1 Properties of plurality points in the L2 norm

As remarked in the introduction, plurality points can
be characterized as follows.

Fact 1 (Wu et al. [13]) A point p is a plurality
point for a set V of n voters in Rd with respect to the
L2 norm if and only if every open halfspace with p on
its boundary contains at most n/2 voters.

Verifying the condition in Fact 1 directly is not efficient.
Hence, we will prove alternative conditions for a point
p to be a plurality point in Rd, which generalize the
conditions Lin et al. [9] stated for the planar case.
First, we define some concepts introduced by Lin et
al.

Let V be a set of n voters in Rd, and consider a
point p ∈ Rd. Let L(p) be the set of all lines passing

through p and at least one voter v 6= p. The point p
partitions each line ` ∈ L(p) into two opposite rays,
which we denote by ρ(`) and ρ(`). (The point p itself
is not part of these rays.) We say that a line ` ∈ L(p)
is balanced if |ρ(`) ∩ V | = |ρ(`) ∩ V |. If n is odd, then
p is a plurality point if and only if every line ` ∈ L(p)
is balanced (which implies that we must have p ∈ V ).
When n is even the situation is more complicated. Let
R(p) be the set of all rays ρ(`) and ρ(`). Label each
ray in R(p) with an integer, which is the number of
voters on the ray minus the number of voters from
V on the opposite ray. Thus, a line ` is balanced if
and only if its rays ρ(`) and ρ(`) have label zero. Let
L∗(p) be the set of all unbalanced lines in L(p) and
let R∗(p) be the corresponding set of rays. We now
define the so-called alternating property, as introduced
by Lin et al. [9]. This property is restricted to the
2-dimensional setting, where we can order the rays in
R∗(p) around p. In this setting, the point p is said to
have the alternating property if the following holds:
the circular sequence of labels of the rays in R∗(p),
which we obtain when we visit the rays in R∗(p) in
clockwise order around p, alternates between labels +1
and −1. Note that if p has the alternating property
then the number of unbalanced lines must be odd.

Theorem 2 Let V be a set of n voters in Rd, with
d > 1, and let p be an arbitrary point.

a. If n is odd, p is a plurality point if and only if
p ∈ V and every line in L(p) is balanced.

b. If n is even and p /∈ V , then p is a plurality point
if and only if every line in L(p) is balanced.

c. If n is even and p ∈ V , then p is a plurality point
if and only if all unbalanced lines in L(p) are
contained in a single 2-dimensional flat f and p
has the alternating property for the set V ∩ f .

For d = 1 the theorem is trivial, and for d = 2—
the condition in case c then simply states that p has
the alternating property—the theorem was proved by
Lin et al. [9] Our contribution is the extension to higher
dimensions. Before proving Theorem 2, we need the
following lemma regarding the robustness of plurality
points to dimension reduction.

Lemma 3 Let p be a plurality point for a set V in
Rd, with d > 1, and let f be any lower-dimensional
flat containing p. Then p is a plurality point for V ∩ f .

Proof. We prove the statement by induction on d.
For d = 1 the lemma is trivially true, so now consider
the case d > 1. We consider two cases.

The first case is that f is a hyperplane, that is,
dim(f) = d − 1. Let f+ and f− denote the open
halfspaces bounded by f , and assume without loss of
generality that |f+ ∩ V | > |f− ∩ V |. Suppose for a
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contradiction that p is not a plurality point for f ∩ V .
Then there must be a (d − 2)-flat g ⊂ f containing
p such that, within the (d − 1)-dimensional space f ,
the number of voters lying strictly to one side of g is
greater than |f ∩ V |/2. Let g+ ⊂ f denote the part
of f lying to this side of g. Now imagine rotating f
around g by an infinitesimal amount. Let f̂ denote
the rotated hyperplane. Then all voters in f+ ∩V end
up in f̂+. Moreover, we can choose the direction of
the rotation such that the voters in g+ ∩ V end up
in f̂+. But then |f̂+ ∩ V | = |f+ ∩ V | + |g+ ∩ V | >
|f+ ∩ V | + |f ∩ V |/2 > n/2, which contradicts the
assumption that p is a plurality point.

The second case is that dim(f) < d − 1. Let h be
a hyperplane that contains f . From the first case we
know that p must be a plurality point for h∩V . Hence,
we can apply our induction hypothesis to conclude that
p must be a plurality point for f ∩ V . �

Now we are ready to prove Theorem 2.

Proof. [Proof of Theorem 2] Since the case d = 2 was
already proved by Lin et al. [9], and the case d = 1 is
trivial, we assume d > 3. Below we prove part c. The
proof of parts a and b is given in the full version.

(c,⇐). Assume n is even and let p be a point such
that all unbalanced lines in L(p) are contained in a
single 2-dimensional flat f and p has the alternating
property for the set V ∩ f . Consider an arbitrary
open halfspace h+ whose bounding hyperplane h
contains p, and let h− be the opposite open halfspace.
If h contains f then all unbalanced lines lie in h and
so |h+∩V | = |h−∩V |, which implies |h+∩V | 6 n/2.
If h does not contain f , we can argue as follows. Let
` := h ∩ f . Since the theorem is true for d = 2 and
we have the alternating property on f , we know that
p is a plurality point on f . Hence, the number of
voters on f on either side of ` is at most |f ∩ V |/2.
But then we have |h+ ∩ V | 6 n/2, because all voters
not in f lie on balanced lines. We conclude that for
any open halfspace h+ we have |h+ ∩ V | 6 n/2, and
so p is a plurality point.

(c,⇒). Assume n is even and let p be a plurality
point. We first argue that all unbalanced lines must
lie on a single 2-flat. Assume for a contradiction that
there are three unbalanced lines that do not lie on
a common 2-flat. Let g be the 3-flat spanned by
these lines, and let L∗(g) ⊂ L∗(p) be the set of all
unbalanced lines contained in g. Let f1 ⊂ g be a
2-flat not containing p and not parallel to any of the
lines in L∗(g). Each of the lines in L∗(g) intersects
f1 in a single point, and these intersection points are
not all collinear. According to the Sylvester-Gallai
Theorem [5] this implies there is an ordinary line
in f1, that is, a line containing exactly two of the
intersection points. Thus we have an ordinary 2-flat
in g, that is, a flat f2 containing exactly two lines

from L∗(p). This implies that f2 ∩ V does not have
the alternating property, and since we know by the
result of Lin et al. that the theorem holds when
d = 2 this implies that p is not a plurality point in f2.
However, this contradicts Lemma 3.

We just argued that all unbalanced lines must lie on a
single 2-flat f . By Lemma 3 the point p is a plurality
point on f . Since the theorem holds for d = 2, we
conclude that f ∩ V has the alternating property.

�

2.2 Finding plurality points in the L2 norm

We now turn our attention to finding a plurality point.
Our algorithm needs a subroutine for finding a median
hyperplane h for V , which is a hyperplane such that
|h+∩V | < n/2 and |h−∩V | < n/2, where h+ and h−

denote the two open halfspaces bounded by h. The
following lemma is easy to prove.

Lemma 4 Let v ∈ V be a voter that lies on a hyper-
plane h0 such that all voters either lie on h0 or in h+0 .
Then we can find a median hyperplane h containing v
in O(n) time.

For d > 2 the plurality point is unique, if it exists
(the proof is given in the full version). The algorithm
below either reports a single candidate point p—we
show later how to test if the candidate is actually
a plurality point or not—or it returns ∅ to indicate
that it already discovered that a plurality point does
not exist. When called with a set V of n collinear
voters, the algorithm will return the set of all plurality
points; if n is even the set is a segment connecting the
two median voters, if n is odd the set is a degenerate
segment consisting of the (in this case unique) median
voter. We call this segment the median segment.

FindCandidates(V )

1. If all voters in V are collinear, then return the
median segment of V .

2. Otherwise, proceed as follow.

(a) Let v0 ∈ V be a voter with minimum xd-
coordinate. Find a median hyperplane h0
containing v0 using Lemma 4, and let
cand0 := FindCandidates(h0 ∩ V ).

(b) If cand0 is a single point or cand0 = ∅ then
return cand0.

(c) If cand0 is a (non-degenerate) segment then
let v1 ∈ V be a voter whose distance to
h0 is maximized. Find a median hyper-
plane h1 containing v1 using Lemma 4, and
let cand1 := FindCandidates(h1∩V ). Re-
turn cand0 ∩ cand1.
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Lemma 5 Algorithm FindCandidates(V ) returns
in O(n) time a set cand of candidate plurality points
such that (i) if all voters in V are collinear then cand
is the set of all plurality points of V ; (ii) otherwise
cand contains at most one point, and no other point
can be a plurality point of V .

Proof. If all voters in V are collinear then the algo-
rithm returns the correct result in Step 1, so assume
not all voters are collinear. Consider the median hy-
perplane computed in Step 2a. Since |h+0 ∩ V | < n/2
and |h−0 ∩ V | < n/2, for any point p /∈ h there is an
open halfspace containing p and bounded by a hyper-
plane parallel to h0 that contains more than n/2 voters.
Hence, by Fact 1 any plurality point for V must lie
on h0. By Lemma 3, if a plurality point exists for V
it must also be a plurality point for h0 ∩ V . By induc-
tion we can assume that FindCandidates(h0 ∩V ) is
correct. Hence, the result of the algorithm is correct
when cand0 is a single point or cand0 = ∅. Note that
when cand0 is a (non-degenerate) segment—this only
happens when all voters in h0 ∩ V are collinear—we
must have V 6= h0∩V , otherwise V would be collinear
and we would be done after Step 1. Hence, v1 /∈ h0. By
the same reasoning as above the median hyperplane h1
must contain the plurality point of V (if it exist). But
then the plurality point must lie in cand0∩cand1, and
since v1 /∈ h0 we know that cand0 ∩ cand1 is either a
single point or it is empty. This proves the correctness.

To prove the time bound, we note that we only
have two recursive calls when the first recursive call
reports a non-degenerate candidate segment. This
only happens when all voters in h0 ∩ V are collinear,
which implies the recursive call just needs to compute
a median segment in O(n) time—it does not make
further recursive calls. Thus we can imagine adding
this time to the original call, so that we never make
more than one recursive call. Since the recursion depth
is at most d, and each call needs O(n) time, the bound
follows. �

Our algorithm to find a plurality point first calls
FindCandidates(V ). If all points in V are collinear
we are done—FindCandidates(V ) then reports the
correct answer. Otherwise we either get a single can-
didate point p, or we already know that a plurality
point does not exist. It remains to test if a candidate
point p is a plurality point or not.

To this end we have to check the conditions of The-
orem 2, which can easily be done in O(n log n) time.

Lemma 6 Given a set V of n voters in Rd and a
candidate point p, we can test in O(n log n) time if p
is a plurality point in the L2 norm.

We obtain the following theorem.

Theorem 7 Let V be a set of n voters in Rd, where
d > 2 is a fixed constant. Then we can find in
O(n log n) time the plurality point for V in the L2

norm, if it exists, and this time bound is optimal.

3 Conclusion

Most point sets do not admit a plurality point in the
L2 norm. Hence, in the full version of the paper we
also study several other problems concerning plurality
points: we give fast algorithms to find the smallest
subset W ⊂ V such that V \W admits a plurality
point, we show how to compute a so-called plurality
ball in the plane, and we study plurality points in the
L1 norm.
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