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Voronoi Diagrams for Parallel Halflines in 3D
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Abstract

We consider the Euclidean Voronoi diagram for a set
of n parallel halflines in R3. A relation of this di-
agram to planar power diagrams is shown, and is
used to analyze its geometric and topological prop-
erties. Moreover, a simple plane-sweep algorithm is
given that computes the Voronoi diagram for parallel
halflines at logarithmic cost per face.

1 Introduction

The Voronoi diagram is a powerful and widely used
geometric partitioning structure. Many of its proper-
ties are well understood, also in generalized settings
of various kinds; see e.g. [5].

Still, knowledge becomes quite sparse in dimensions
larger than two, when sites of more general shape
are allowed. This concerns the structural as well as
the algorithmic properties, and is already true for the
generalization from point sites to line segments. The
combinatorial complexity of the Voronoi diagram for
n line segments, and in particular, for n straight lines
in Euclidean d-space Rd can be as large as Ω(nd−1);
see [3]. The only known upper bound follows from a
general result on lower envelopes of hypersurfaces [12],
and is O(nd+ε) for any ε > 0.

Even in R3, no better bounds than Ω(n2) and
O(n3+ε), respectively, are known up to date. This
may be partially due to the complicated shape of the
arising bisector surfaces. They contain, among other
components, parabolic and hyperbolic patches, and
can lead to a diagram of fairly complicated topologi-
cal structure. Already for three straight lines as sites,
the induced structure gets so intricate that a separate
paper has been devoted to its exploration [8].

To make the problem more tractable, several re-
stricted scenarios have been considered. For exam-
ple, if the line segment sites are confined to have
constantly many orientations [10], then the size of
the diagram reduces to O(n2+ε). If, on the other
hand, the underlying distance function is polyhedral
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and convex, then the diagram becomes piecewise-
linear. The upper bound then can be tightened
to O(n2α(n) log n), even when constant-sized convex
polyhedra are allowed as sites; see [6] and [9], respec-
tively. A practical algorithm for computing the me-
dial axis of a nonconvex polytope in R3 under a con-
vex polyhedral distance function is given in [2].

In the present note, we discuss a simple though non-
trivial special case for the Euclidean distance, namely,
the case where all sites are parallel halflines in R3,
being unbounded in the same direction. Apart from
the theoretical interest, practical applications arise in
certain problems in the drilling industry (mining ex-
ploitation, offshore drilling, hydraulics, etc.), as is re-
ported by Adamou [1]. In particular, such Voronoi
diagrams serve in the exploration of the nearest lay-
ers to avoid collision between wells and identifying
unwanted plies. A related problem where this dia-
gram may be useful is approximate nearest-neighbor
searching among a set of parallel line segments in R3,
which has been studied in Emiris et al. [7].

As an interesting fact, the Voronoi diagram for par-
allel halflines is related to planar power diagrams. We
describe this correspondence in Section 2, along with
its structural implications. On the algorithmic side,
a simple plane-sweep algorithm is obtained in Sec-
tion 3. Basically, a power diagram for fixed sites
has to be updated under continuous changes of site
weights. Section 4 studies the behavior of the trisec-
tor curves for the halfline Voronoi diagram, motivated
by an attempt to reduce the O(n2+ε) upper bound on
its combinatorial complexity (which follows from the
result in [10]) to O(n2). Some extensions of our results
are mentioned in Section 5.

2 Diagram

Let H = {h1, . . . , hn} be a set of parallel halflines
in R3. We assume that each hi is vertical, and un-
bounded in negative z-direction. The upper endpoint
of hi is denoted by zi. We call zi the tip of hi, and
(by slight abuse of notation) we will use zi also to
denote the z-coordinate of the tip. The distance of a
point x ∈ R3 to a halfline hi is defined as

d(x, hi) = min{δ(x, q) | q ∈ hi}

where δ denotes the Euclidean distance function. This
distance is the normal distance of x to the supporting
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line, ℓi, of hi, unless d(x, hi) is attained at the tip zi.
The region of a halfline in the Voronoi diagram, V(H),
of H is given by

reg(hi) = {x ∈ R3 | d(x, hi) ≤ d(x, hj), for all j}.

Regions are bounded by bisectors, Bij , for pairs of
halflines hi, hj . Let the respective tips satisfy zi ≥ zj.
Then Bij is composed of three parts: A planar patch,
contained in the (vertical) bisecting plane of the
lines ℓi and ℓj , a piece of a parabolic cylinder equidis-
tant from line ℓi and point zj , and another planar
patch in the bisecting plane of the points zi and zj.
In the case zi = zj , Bij is a single vertical plane.

The analysis of the structure of V(H) is eased by
the fact that the generators of the parabolic patches
are horizontal lines. This gives the following property:

Observation 1 The intersection ofBij with any hor-

izontal plane is a straight line.

Denote with E∆ the horizontal plane z = ∆, and
consider the lines bij = Bij ∩E∆. As bisectors inter-
sect 3 by 3 in trisectors tijk = Bij ∩ Bik ∩ Bjk, the
lines bij , bik, and bjk concur in a common point (or
are parallel), for any pairwise different indices i, j, k.
This implies, by a result in [4], that the line system
(bij)1≤i<j≤n is the set of power lines defined by n

weighted points in E∆. A more direct argument fol-
lows from the lemma below.

Lemma 1 Consider the point pi = ℓi ∩ E∆, and as-

sign the weight wi = −max{0, (∆ − zi)}
2 to it. For

any x ∈ E∆, we have d(x, hi)
2 = δ(x, pi)

2 − wi.

Proof. If E∆ lie below zi then pi ∈ hi and wi = 0,
and the assertion is trivial. Otherwise, it follows
from the Pythagorean theorem, because hi is normal
to E∆. �

In other words, the squared distance of x to hi is
the power distance of x to the point pi with weight wi.
We therefore have the following geometric relation:

Theorem 2 For all values ∆, the sectional diagram

V(H) ∩ E∆ is identical to the power diagram of the

points p1, . . . , pn, for the weights wi in Lemma 1.

In particular, if E∆ lies below all tips then the Eu-
clidean Voronoi diagram of p1, . . . , pn is obtained.

Figure 1 displays the trisector arcs of V(H) for a
set H of 10 halflines. A corresponding sectional power
diagram is shown in Figure 2.

Theorem 2 indicates that V(H) must have a rela-
tively simple structure, which we will study now in
more detail. First of all, the weights wi, when seen
as functions wi(∆), are continuous. wi(∆) is zero for
∆ ≤ zi, and decreases quadratically for ∆ > zi.

Figure 1: A halfline diagram with sectional plane,
projected normal to the z-axis.

We watch the interplay on E∆ when ∆ is increased
from−∞ to∞. The power cells Ci(∆) = reg(hi)∩E

∆

are convex polygons, whose vertices move continu-
ously. For sufficiently small ∆, each cell Ci(∆) is a
planar Voronoi region, and therefore is non-empty. Its
edges first poise, and then move self-parallely because
p1, . . . , pn stay fixed, and movement is in a fixed direc-
tion by the shape of the bisectors Bij . So each point
x ∈ E∆ can enter or leave Ci(∆) at most once. Also,
if Ci(∆) disappears from the diagram it cannot reap-
pear, by the monotone movement of its edges. We
summarize:

Property 1 The intersection of reg(hi) with every

vertical line is connected or empty. Moreover, reg(hi)
is a simply-connected set.

Note that a power cell Ci(∆) survives for ∆ → ∞
if and only if the tip zi appears on the upper convex
hull of {h1, . . . , hn}. Property 1 does not imply that
the combinatorial size of reg(hi) is O(n): Although
the number of bisectors Bij that border reg(hi) is
trivially limited to n− 1, a single bisector may de-
fine more than one facet (connected boundary patch)
of reg(hi). Indeed, there are multiple adjacencies be-
tween the regions in V(H) in general; see Section 4.

Figure 2: The sectional power diagram.
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Let us now have a look at the Voronoi diagram
V({hi, hj , hk}) for only three halflines. The trisec-
tor curve tijk corresponds to a power diagram vertex
u∆ = tijk ∩E∆ for all ∆, unless the points pi, pj , and
pk are collinear (which we will exclude for the ease of
description). This implies:

Property 2 Each trisector tijk is a connected curve,

unbounded in both z-directions, and monotone.

In particular, tijk does not contain cycles. For pair-
wise different tip heights, the curve tijk is composed
of 4 pieces, as can be easily verified: a halfline, two
quadratic arcs, and another halfline. Therefore the
algebraic degree of tijk is only two. Still, trisectors
show a complicated intersection pattern in general.
We will address this issue in Section 4.

3 Algorithm

Theorem 2 suggests a plane-sweep algorithm that
computes the diagram V(H) in ascending z-direction.

The task is to maintain a power diagram for fixed
points in the plane, under variation of their weights.
The incidence structure of V(H) then can be inferred
from the combinatorial changes that take place in the
power diagram: When a power diagram edge appears
(or disappears, respectively), then a facet of V(H)
is born (or completed). Moreover, the collapse of a
power cell signals the completion of a region in V(H).

An entirely two-dimensional implementation has
been done, which avoids computing (costly) intersec-
tions of three-dimensional bisectors. Once the com-
binatorial structure of V(H) has been extracted, the
bisector patches and trisector arcs that determine the
geometry of V(H) are calculated in a final step.

To describe the combinatorial part of the algorithm
in more detail, let PD(∆) be the power diagram for
the points p1, . . . , pn with weights w1(∆), . . . , wn(∆),
as defined in Section 2. We start with any value ∆ <

min{z1, . . . , zn}, and initialize PD(∆) as the planar
Voronoi diagram of {p1, . . . , pn}.

There is only one type of events (z-values) where
the power diagram can change. These are the antici-
pated life ends aij of its edges eij .
More specifically, aij is the z-value of the lowest

intersection point above E∆ of the respective two tri-
sector curves tijk and tijm, which define the endpoints
of eij . This value can be calculated in O(1) time, by
solving a quadratic equation in z for each of the inter-
vals given by zi, zj , zk, zm. In the diagram PD(aij), an
update of constant complexity has to be performed.
This update is either a flip that replaces the edge eij
by the edge ekm (and a facet of V(H) in Bij gets com-
pleted), or a collapse of a triangular cell incident to
the edge eij , say Ci(aij) (and the region reg(hi) gets
completed).

The tips zi of the halflines hi do not lead to combi-
natorial changes in PD(zi). They only alter the speeds
of the edges in the power cell Ci(zi). This information
is already incorporated in the trisector intersection
task above.

We use a priority queue organized by z-values to
maintain the order of events. Only O(n) entries need
to be stored at a time, by the linear number of edges
in the power diagram PD(∆). The next event to be
performed then is accessible in O(log n) time. More-
over, the total number of entries aij is bounded by
the number of facets of V(H).

Note finally that the numbers of facets, arcs, and
nodes of V(H) are linearly related: A region with f

facets has O(f) arcs and nodes, because the degree of
its nodes is at least 3. We conclude:

Theorem 3 V(H) can be computed in logarithmic

time per face, using O(n) extra storage.

4 Trisectors

The combinatorial size of V(H) tends to be near-linear
for many data, as has been observed in our experi-
ments. Thus the output-sensitive algorithm in Sec-
tion 3 can be expected to run fast in practice. On the
other hand, V(H) can attain a complexity of Ω(n2),
for example, when the tips zi are arranged like in a
worst-case example for the Voronoi diagram of point
sites in R3. This almost matches the upper bound
of O(n2+ε) for V(H), which follows from the more
general bound in [10]; see Section 1. Proving a possi-
ble quadratic upper bound is complicated by the fact
that the trisector curves of V(H) do not behave like
pseudo-lines. Let us briefly comment on this fact.

For the halfline hi with lowest tip, its region is al-
ways convex; all the bisectors Bij either ‘bend’ to-
wards hi or are vertical planes. If the size of reg(hi)
can be shown to be O(n), then an insertion argument
for regions in ascending order of tip heights implies
an overall O(n2) diagram size. Unfortunately, the re-
sult in [11] on the linear size of surface envelopes does
not apply, because two trisector curves can intersect
in more than one point.

To see an example, consider four halflines h1, h2,
h3, and h4 arranged as is illustrated in Figure 3, from
the top view (left) and from the front view (right).
The two trisector curves t123 and t234 (and two oth-
ers) concur in a point x, if and only if there exists a
sphere centered at x that simultaneously touches all
four halflines. There are two such spheres, a smaller
one resting on the tip of the rightmost halfline, and
bigger one passing through all four tips.1

1Thanks go to Peter Widmayer’s group for pointing us to

this example.
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Figure 3: Two touching spheres for 4 halflines.

The trisectors defined by 4 halflines can have at
most 3 intersection points, by a simple algebraic
case analysis. This bound is actually attained, and
even worse, there are constellations of n halflines for
any n ≥ 4 where every quadruple of related trisectors
shows such an intersection behavior.

As another approach, one can try to bound the
overall number of edges that appear in the power di-
agram PD(∆) for varying ∆. There are

(

n

2

)

potential
power edges. However, once having disappeared, an
edge between the same two power cells can appear
again. In fact this can happen n − 2 times, which
is the maximum possible. Stated differently, a fixed
bisector Bij can define Θ(n) facets where the two re-
gions reg(hi) and reg(hj) are adjacent.
On the other hand, edge speeds in PD(∆) are not

arbitrary. Starting with 0, the speed of an edge in-
creases at constant acceleration, until it stays con-
stant forever.
By the relationship between power diagrams and

convex hulls (see e.g. [5]), the problem above can
be transformed into a dynamic convex hull problem
in R3. Starting from the paraboloid of revolution
z = x2+y2 at different times, n points move upwards
vertically and at constant accelerations. The question
of interest is now to bound the number of combinato-
rial changes that occur on their convex hull.

5 Extensions

An obvious extension of the results in this note
concerns the Voronoi diagram of parallel line seg-
ments that are bounded in both directions. Whereas
Lemma 1 can be generalized straightforwardly such
that Theorem 2 still holds, the resulting plane-sweep
algorithm now has to deal with the detection of new
regions, which cannot be done locally. A simple so-
lution is to calculate the respective ∆-values directly
and beforehand, in O(n logn) time each.

Theorem 4 The Voronoi diagram of n parallel line

segments in R3 can be computed in O((n2+K) logn)
time and optimal space, where K denotes the size of

the output.

Our results also generalize to higher dimensions.
For example, for computing the Voronoi diagram of
parallel line segments in R4, a power diagram in R3

can be maintained. The sweep algorithm then con-
structs the desired diagram 2-face by 2-face and re-
tains its output-sensitivity, though details get more
involved.
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