
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Non-crossing Bottleneck Matchings of Points in Convex Position

Marko Savić∗ Miloš Stojaković∗†

Abstract

Given an even number of points in a plane, we are
interested in matching all the points by straight line
segments so that the segments do not cross. Bot-
tleneck matching is a matching that minimizes the
length of the longest segment. For points in convex
position, we present a quadratic-time algorithm for
finding a bottleneck non-crossing matching, improv-
ing upon the best previously known algorithm of cubic
time complexity.

1 Introduction

Let P be a set of n points in the plane, where n is
an even number. Let M be a perfect matching of
points in P , using n/2 straight line segments to match
the points, that is, each point in P is an endpoint of
exactly one line segment. We forbid line segments to
cross. Denote the length of a longest line segment in
M with bn(M), which we also call the value of M . We
aim to find a matching that minimizes bn(M). Any
such matching is called bottleneck matching of P .

1.1 Related work

There is plentiful research on various geometric prob-
lems involving pairings without crossings, see [4, 3,
5, 7, 6, 13]. The more basic of those problems in-
volve matching pairs of points by straight line seg-
ments. It is a simple observation that there is always
such a matching with non-crossing segments since it
is straightforward to prove that a matching minimiz-
ing the total sum of lengths of its segments has to be
non-crossing.

In [10], Chang, Tang and Lee gave an O(n2)-time
algorithm for computing a bottleneck matching of a
point set, but in a context where crossings are allowed.
This result was extended by Efrat and Katz in [12] to
higher-dimensional Euclidean spaces.

Abu-Affash, Carmi, Katz and Trablesi showed in
[2] that the problem of computing non-crossing bot-
tleneck matching of a point set is NP-complete and

∗University of Novi Sad, Faculty of Sciences, Department of
Mathematics and Informatics. Partly supported by Ministry
of Education and Science, Republic of Serbia. {marko.savic,
milos.stojakovic}@dmi.uns.ac.rs
†Partly supported by Provincial Secretariat for Science,

Province of Vojvodina.

does not allow a PTAS. They gave a 2
√

10 factor ap-
proximation algorithm, and also showed that the case
where all points are in convex position can be solved
exactly in O(n3) time. In [1], Abu-Affash, Biniaz,
Carmi, Maheshwari and Smid presented an algorithm
for computing a non-crossing bottleneck plane match-
ing of size at least n/5 in O(n log2 n) time. They then
extended it to provide an O(n log n)-time approxima-
tion algorithm which computes a plane matching of
size at least 2n/5 whose edges have length at most√

2 +
√

3 times the length of a longest edge in a non-
crossing bottleneck matching.

Bichromatic (sometimes also called bipartite) ver-
sions of the bottleneck matching problem, where
only points of different colors are allowed to be
matched, have also been studied. Efrat, Itai and Katz
showed in [11] that a bottleneck matching between
two point sets, with possible crossings, can be found
in O(n3/2 log n) time. Bichromatic non-crossing bot-
tleneck problem was proved to be NP-complete by
Carlson, Armbruster, Bellam and Saladi in [9].

Biniaz, Maheshwari and Smid in [8] study special
cases of non-crossing bichromatic bottleneck match-
ings. They show that the case where all points are in
convex position can be solved in O(n3) time with an
algorithm similar to the one for monochromatic case
presented in [2]. They also consider the case where the
points of one color lie on a line and all points of the
other color are on the same side of that line, providing
an O(n4) algorithm to solve it. The same results for
these special cases are independently obtained in [9].
In [8] an even more restricted problem, a case where
all points lie on a circle, is solved by constructing an
O(n log n)-time algorithm.

Here we only deal with matchings without cross-
ings, so from now on, the word matching is used to
refer only to pairings that are crossing-free.

1.2 Convex case and our result

In what follows we consider the case where all points
of P are in convex position, i.e. they are the vertices
of a convex polygon P.

Let us label the points v0, v1, . . . , vn−1 in positive
(counterclockwise) direction. To simplify the nota-
tion, we will often use only the indices when referring
to the vertices. We write {i, . . . , j} to represent the
sequence i, i+ 1, i+ 2, . . . , j − 1, j. All operations are
calculated modulo n; note that i is not necessarily

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

32nd European Workshop on Computational Geometry, 2016

less than j, and that {i, . . . , j} is not the same as
{j, . . . , i}. We say that (i, j) is a feasible pair if there
exists a matching containing (i, j), which in this case
simply means that {i, . . . , j} is of even size.

The problem of finding a bottleneck matching of
points in convex position can be solved in polynomial
time by a fairly straightforward dynamic program-
ming algorithm, as presented in [2]. Similar algorithm
for bichromatic case is presented in [8] and [9].

We present a faster algorithm for finding a bottle-
neck matching in the monochromatic case, with only
O(n2) time complexity.

2 Structure of bottleneck matching

Our aim is to show the existence of a bottleneck
matching with a certain structure that we can utilize
to construct an efficient algorithm. We do so by prov-
ing a sequence of lemmas, with each lemma imposing
an increasingly stronger condition on the structure.

Let us split all point pairs into the two categories.
Pairs consisting of two neighboring vertices of P are
called edges, and all other pairs are called diagonals.
Each matching is, thus, comprised of edges and diag-
onals.

The turning angle of {i, . . . , j}, denoted by τ(i, j),
is the angle by which the vector −−−→vivi+1 should be ro-
tated in positive direction to align with vector −−−−→vj−1vj ,
see Figure 1.

Figure 1: Turning angle.

We start by showing that there are bottleneck
matchings satisfying the following constraint on turn-
ing angles.

Lemma 1 There is a bottleneck matching M of P
such that all diagonals (i, j) ∈M have τ(i, j) > π/2.

Let us consider the division of the polygon P into
regions obtained by cutting it with diagonals (but not
edges) of the given matching M . Each region in this
division is bounded by some diagonals of M and by
some edges from the polygon’s boundary. If there are
exactly k diagonals bounding a region, we say the re-
gion is k-bounded. Any maximal sequence of diagonals

Figure 2: Diagonals inside each shaded area make a
single cascade. There are three cascades with only
one diagonal, one cascade with two diagonals, and
one cascade with three diagonals.

connected by 2-bounded regions is called a cascade,
see Figure 2. We can prove the following lemma.

Lemma 2 There is a bottleneck matching having at
most three cascades.

From Lemma 2 we know that there is a bottle-
neck matching either without 3-bounded regions and
at most one cascade, or with a single 3-bounded re-
gion and exactly three cascades. Obviously, it is not
possible for a matching to have exactly two cascades.
Next, we define a set of simpler problems that will
be used to find an optimal solution in both of these
cases.

3 Subproblems

Let Matching(i, j) be the problem of finding an op-
timal matching Mi,j of points {i, . . . , j} only, so that
Mi,j has at most one cascade, and pair (i, j) belongs
to a region bounded by at most one diagonal from
Mi,j different from (i, j).

If j − i = 1, then the solution to Matching(i, j) is
exactly the edge (i, j). If j−i > 2, we consider the fol-
lowing cases. If there is a solution to Matching(i, j)
that contains the pair (i, j), then Mi,j can be con-
structed by taking (i, j) and Mi+1,j−1 together. If
not, then at least one of the edges (i, i+1) and (j−1, j)
must be a part of Mi,j (as otherwise points i and j
would be endpoints of two different diagonals from
Mi,j , neither of which is (i, j)), which is not allowed by
the requirement that the region containing (i, j) has at
most one other bounding diagonal). If (i, i+1) ∈Mi,j ,
then Mi,j can be constructed from Mi+2,j and the
edge (i, i+ 1). Similarly, if (j − 1, j) ∈ Mi,j , then we
can get Mi,j as Mi,j−2 plus the edge (j − 1, j).

Since these problems have optimal substructure,
we can apply dynamic programming to solve them.

EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

If bn(Mi,j) is saved into S[i, j], the following recur-
rent formula can be used to calculate the solution to
Matching(i, j) for all feasible pairs (i, j),

S[i, j] = min

max{S[i+ 1, j − 1], |vivj |} (1a)

max{S[i+ 2, j], |vivi+1|} (1b)

max{S[i, j − 2], |vj−1vj |}. (1c)

Initially, we set S[i, i] = 0, for all i, and then we fill
values in S in order of increasing j − i, so that all
subproblems are already solved when needed.

Beside the value of a solution to Matching(i, j),
it is going to be useful to determine if pair (i, j)
is necessary for constructing Mi,j , i.e. we want to
know do all solutions to Matching(i, j) contain (i, j).
If that is true then we call such a pair necessary.
This can be easily incorporated into the calculation
of S[i, j]. Namely, if case (1a) is the only one achiev-
ing minimum among cases (1a), (1b) and (1c), we set
necessary(i, j) to >, otherwise we set it to ⊥.

We have O(n2) subproblems, each of which takes
O(1) time to be calculated. Hence, all calculations
together require O(n2) time and the same amount of
space. Note that we calculated only the values of
solutions to all subproblems, but an actual matching
can be easily reconstructed in linear time from the
data in S.

4 Finding bottleneck matching

As we concluded earlier, there is a bottleneck match-
ing of P having either at most one cascade, or exactly
three cascades. An optimal matching with at most
one cascade can be found easily from calculated solu-
tions to subproblems. We just find the minimum of
all S[i + 1, i], and take any Mi+1,i that achieves it.
This step takes only linear time.

Next, we focus on finding an optimal matching
among all matchings with exactly three cascades (de-
noted by 3-cascade matchings in the following text).

Any three distinct points i, j and k, where (i, j),
(j + 1, k) and (k + 1, i − 1) are feasible pairs, can
be used to construct a 3-cascade matching by sim-
ply taking a union of Mi,j , Mj+1,k and Mk+1,i−1.
To find the best one we could run through all pos-
sible triplets (i, j, k) and see which one minimizes
max{S[i, j], S[j+ 1, k], S[k+ 1, i− 1]}. However, that
requiresO(n3) time, and thus is not suitable, since our
goal is to design a faster algorithm. Our approach is
to show that instead of looking at all (i, j) pairs, it is
enough to select (i, j) from a set of linear size, which
would reduce the search space to quadratic number
of possibilities, so the search would take only O(n2)
time.

Next, we prove a couple of simple statements about
3-cascade matchings. In 3-cascade matching, let
us call the three diagonals bounding the single 3-
bounded region the inner diagonals.

Lemma 3 If there is no bottleneck matching with at
most one cascade, then there is a bottleneck 3-cascade
matching whose every inner diagonal is necessary.

We say that (i, j) is a candidate diagonal, if it is a
necessary diagonal and τ(i, j) ≤ 2π/3.

Lemma 4 If there is no bottleneck matching with at
most one cascade, then there is a 3-cascade bottleneck
matching M , such that at least one inner diagonal of
M is a candidate diagonal.

Let us now look at a candidate diagonal (i, j), and
examine the position of points {i+1, . . . , j−1} relative
to it. We construct the circular arc h on the right side
of the directed line vivj , from which the line segment
vivj subtends an angle of π/3, see Figure 3. We denote
the midpoint of h with A. Points vi, A and vj form an
equilateral triangle, hence we are able to construct the
arc a− between A and vi with the center in vj , and the
arc a+ between A and vj with the center in vi. These
arcs define three areas: Π−, bounded by h and a−,
Π+, bounded by h and a+, and Π0, bounded by a−,
a+ and the line segment vivj , all depicted in Figure 3.
Using these definitions we state the following lemma.

Figure 3: Points vi+1, . . . , vj−1 all lie inside either Π−

or Π+.

Lemma 5 If (i, j) is a candidate diagonal, then
points vi+1, . . . , vj−1 either all belong to Π− or all
belong to Π+.

With Π−(i, j) and Π+(i, j) we respectively denote
areas Π− and Π+ corresponding to the candidate di-
agonal (i, j).

Two possibilities for a candidate diagonal (i, j) pro-
vided by Lemma 5 bring forth a concept of polarity.
If points {i+ 1, . . . , j − 1} lie in Π−(i, j) we say that
candidate diagonal (i, j) has negative polarity and has
i as its pole. Otherwise, if these points lie in Π+(i, j),
we say that (i, j) has positive polarity and pole in j.

We arrive at the crucial observation, which will en-
able us to limit the search space of the algorithm.

32nd European Workshop on Computational Geometry, 2016

Lemma 6 No two candidate diagonals of the same
polarity can have the same point as a pole.

A simple corollary of Lemma 6 is that there is at
most linear number of candidate diagonals.

Lemma 7 There are O(n) candidate diagonals.

Finally, we combine our findings from Lemma 4 and
Lemma 7, as described in the beginning of Section 4,
to construct Algorithm 1.

Algorithm 1 Bottleneck Matching

Calculate S[i, j] and necessary(i, j) for all feasible
(i, j) pairs, as described in Section 3.
best← min{S[i+ 1, i] : i ∈ {0, . . . , n− 1}}
for all feasible (i, j) do

if necessary(i, j) and τ(i, j) ≤ 2π/3 then
for k ∈ {j+ 1, . . . , i− 1} such that (j+ 1, k)
is feasible do

best← min{best,max{S[i, j], S[j + 1, k],
S[k + 1, i− 1]}}

end for
end if

end for

Theorem 8 Algorithm 1 finds the value of bottle-
neck matching in O(n2) time.

Proof. The first step, calculating S[i, j] and
necessary(i, j) for all (i, j) pairs, is done in O(n2)
time, as described in Section 3. The second step finds
the minimal value of all matchings with at most one
cascade in O(n) time.

The rest of the algorithm finds the minimal value of
all 3-cascade matchings. Lemma 4 tells us that there
is a bottleneck matching among 3-cascade matchings
with one inner diagonal being a candidate diagonal,
so the algorithm searches through all such matchings.
We first fix the candidate diagonal (i, j) and then en-
ter the inner for-loop, where we search for an optimal
3-cascade matching having (i, j) as an inner diagonal.
Although the outer for-loop is executed O(n2) times,
Lemma 7 guarantees that the if-block is entered only
O(n) times. The inner for-loop splits {j+1, . . . , i−1}
in two parts, {j+1, . . . , k} and {k+1, . . . , i−1}, which
together with {i, . . . , j} make three parts, each to be
matched with at most one cascade. We already know
the values of optimal solutions for these three sub-
problems, so we combine them and check if we get a
better overall value. At the end, the minimum value
of examined matchings is contained in best, and that
has to be the value of a bottleneck matching, since we
surely examined at least one bottleneck matching. �

Algorithm 1 gives only the value of a bottleneck
matching, however, it is easy to reconstruct an actual

bottleneck matching by reconstructing matchings for
subproblems that led to the minimum value. This
reconstruction can be done in linear time.

References

[1] A. K. Abu-Affash, A. Biniaz, P. Carmi, A. Mahesh-
wari, and M. Smid. Approximating the bottleneck
plane perfect matching of a point set. Computational
Geometry, 48(9):718 – 731, 2015.

[2] A. K. Abu-Affash, P. Carmi, M. J. Katz, and Y. Tra-
belsi. Bottleneck non-crossing matching in the plane.
Computational Geometry, 47(3):447–457, 2014.

[3] O. Aichholzer, S. Bereg, A. Dumitrescu, A. Garćıa,
C. Huemer, F. Hurtado, M. Kano, A. Márquez,
D. Rappaport, S. Smorodinsky, D. Souvaine, J. Urru-
tia, and D. R. Wood. Compatible geometric match-
ings. Computational Geometry, 42(6):617–626, 2009.

[4] O. Aichholzer, S. Cabello, R. Fabila-Monroy,
D. Flores-Penaloza, T. Hackl, C. Huemer, F. Hur-
tado, and D. R. Wood. Edge-removal and non-
crossing configurations in geometric graphs. Dis-
crete Mathematics and Theoretical Computer Sci-
ence, 12(1):75–86, 2010.

[5] N. Alon, S. Rajagopalan, and S. Suri. Long non-
crossing configurations in the plane. In Proceedings
of the ninth annual symposium on Computational ge-
ometry, pages 257–263. ACM, 1993.

[6] G. Aloupis, E. M. Arkin, D. Bremner, E. D. Demaine,
S. P. Fekete, B. Kouhestani, and J. S. Mitchell.
Matching regions in the plane using non-crossing seg-
ments. EGC, 2015.

[7] G. Aloupis, J. Cardinal, S. Collette, E. D. De-
maine, M. L. Demaine, M. Dulieu, R. Fabila-Monroy,
V. Hart, F. Hurtado, S. Langerman, M. Saumell,
C. Seara, and P. Taslakian. Non-crossing matchings
of points with geometric objects. Computational ge-
ometry, 46(1):78–92, 2013.

[8] A. Biniaz, A. Maheshwari, and M. Smid. Bottleneck
bichromatic plane matching of points. Canadian Con-
ference on Computational Geometry, 2014.

[9] J. G. Carlsson, B. Armbruster, H. Bellam, and R. Sal-
adi. A bottleneck matching problem with edge-
crossing constraints. International Journal of Com-
putational Geometry and Applications, to appear.

[10] M.-S. Chang, C. Y. Tang, and R. C. T. Lee. Solv-
ing the euclidean bottleneck matching problem by
k-relative neighborhood graphs. Algorithmica, 8(1-
6):177–194, 1992.

[11] A. Efrat, A. Itai, and M. J. Katz. Geometry helps in
bottleneck matching and related problems. Algorith-
mica, 31(1):1–28, 2001.

[12] A. Efrat and M. J. Katz. Computing euclidean bot-
tleneck matchings in higher dimensions. Information
processing letters, 75(4):169–174, 2000.

[13] J. Kratochv́ıl and T. Ueckerdt. Non-crossing connec-
tors in the plane. In Theory and Applications of Mod-
els of Computation, volume 7876 of Lecture Notes in
Computer Science, pages 108–120. Springer, 2013.

