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Abstract

Given a simple polygon P on n vertices, two points
x, y in P are said to be visible to each other if the
line segment between x and y is contained in P. The
point guard art gallery problem asks for a minimum
set S such that every point in P is visible from a point
in S. The vertex guard art gallery problem asks for
such a set S subset of the vertices of P. The set S
is referred to as guards. We show W [1]-hardness of
both variants, when parameterized by the number k
of guards. We even rule out any no(k/ log k) algorithm
under the exponential time hypothesis.

1 Introduction

Given a simple polygon P on n vertices, two points
x, y in P are said to be visible to each other if the
line segment between x and y is contained in P. The
point-guard art gallery problem asks for a minimum
set S of points called guards such that every point in
P is visible from a point in S. The vertex guard art
gallery problem asks for such a set of guards S subset
of the vertices of P.

One of the first combinatorial results is the elegant
proof of Fisk that bn/3c guards are always sufficient
and sometimes necessary for a polygon with n ver-
tices [8]. On the algorithmic side, very few variants
are solvable in polynomial time [5, 11], but most re-
sults are on approximating the minimum number of
guards [3, 4, 6, 9]. On the lower bound side the paper
of Eidenbenz et al. showed for most relevant variants
NP-hardness and inapproximability [7]. In particular,
their reduction from Set-Cover implies that the art
gallery is W [2]-hard on polygons with holes and that
there is no no(k) algorithm, to determine if k guards
are sufficient for a given gallery with n vertices, under
the exponential time hypothesis [7, Sec.4]. However,
polygons with holes are very different to simple poly-
gons as they have unbounded VC-dimension [12]. In
particular none of these reductions rule out a fixed pa-
rameter tractable algorithm (i.e., whose running time
is O(f(k)nc) where f is any computable function and
c is a constant) for simple polygons (see [2] for an
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introduction to parameterized complexity.).
Obviously, the vertex guard variant can be solved

in time O(nk+2) by trying out all possible subsets of
size k of the vertices and checking if one of those sub-
sets sees the whole polygon. Not obvious at all is the
algorithm running in time nO(k) for the point guard
variant using standard tools from real algebraic geom-
etry [1]. Despite the fact that the first algorithm is
extremely basic and the second algorithm, even with
remarkably sophisticated tools, uses almost no prob-
lem specific insights, no better exact parameterized
algorithms are known.

We present the first conditional lower bounds for
the parameterized art gallery problem for simple poly-
gons:

Theorem 1 (Point guard hardness) Point
Guard Art Gallery parameterized by the number
of guards k is W [1]-hard, and is not solvable in time
no(k/ log k), under the ETH.

Theorem 2 (Vertex guard hardness) Vertex
Guard Art Gallery is W [1]-hard, and is not
solvable in time no(k/ log k), under the ETH.

2 Preliminaries

For any two integers x < y, we set [x, y] := {x, x +
1, . . . , y − 1, y}, and for any positive integer x, [x] :=
[1, x]. The Exponential Time Hypothesis (ETH) is a
conjecture by Impagliazzo et al. [10] asserting that
there is no 2o(n)-time algorithm for 3-SAT on in-
stances with n variables.

Polygons and visibility. For any two distinct points
v and w in the plane, we denote by seg(v, w) the seg-
ment whose two endpoints are v and w, by ray(v, w)
the ray starting at v and passing through w, by `(v, w)
the supporting line passing through v and w.

A polygon is simple if it is not self-crossing and has
no holes. For any point x in a polygon P, VP(x), or
simply V (x), denotes the visibility region of x within
P, that is the set of all the points y ∈ P such that
segment seg(x, y) is entirely contained in P. We say
that two vertices v and w of a polygon P are neighbors
or consecutive if vw is an edge of P. A subpolygon P ′
of a simple polygon P is defined by any l distinct con-
secutive vertices v1, v2, . . . , vl of P (that is, for every
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i ∈ [l − 1], vi and vi+1 are neighbors in P) such that
v1vl does not cross any edge of P.

Given a vertex v and two points p and p′, we call
triangular pocket rooted at vertex v and supported by
ray(v, p) and ray(v, p′) a sub-polygon w, v, w′ such
that ray(v, w) passes through p, ray(v, w′) passes
through p′. We say that v is the root of the trian-
gular pocket that we denote P(v). We also say that
the pocket P(v) points towards p and p′.

Structured 2-Track Hitting Set. We introduce a
new problem which will constitute a handy starting
point to show Theorem 1 and 2. In the 2-Track Hit-
ting Set problem, the input consists of an integer k,
two sets A and B of the same cardinality totally or-
dered by ≤A and ≤B , and two sets SA of A-intervals
(that is a set of consecutive elements of A according to
≤A), and SB of B-intervals. In addition, the elements
of A and B are in one-to-one correspondence φ : A→
B and each pair (a, φ(a)) is called a 2-element. The
goal is to find a set S of k 2-elements such that the first
projection of S is a hitting set of A, and the second
projection of S is a hitting set of B. Structured
2-Track Hitting Set is the same problem with
color classes over the 2-elements, and a restriction on
the one-to-one mapping φ. A is partitioned into k
classes (C1, C2, . . . , Ck) where Cj = {aj1, aj2, . . . , ajt}
for each j ∈ [k], where |A| = tk, and is or-
dered: a11, a

1
2, . . . , a

1
t , a

2
1, a

2
2, . . . , a

2
t , . . . , a

k
1 , a

k
2 , . . . , a

k
t .

We define C ′j := φ(Cj) and bji := φ(aji ) for all i ∈ [t]
and j ∈ [k]. We now impose that φ is such that, for
each j ∈ [k], the t elements of C ′j are consecutive along
≤B . That is, B is ordered: C ′σ(1), C

′
σ(2), . . . , C

′
σ(k) for

some permutation on [k], σ ∈ Sk. For each j ∈ [k],
the order of the elements within C ′j can be described
by a permutation σj ∈ St such that the ordering of C ′j
is: bjσj(1)

, bjσj(2)
, . . . , bjσj(t)

. Due to space limitations,

we omit the proof of the following theorem.

Theorem 3 Structured 2-Track Hitting Set
is W [1]-hard, and not solvable in time |I|o(k/ log k),
unless the ETH fails.

3 Point Guard

Overview of the reduction. Given an instance I =
(k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB),
we build a simple polygon P with O(kt+ |SA|+ |SB |)
vertices, such that I is a YES-instance iff P can be
guarded by 3k points.

The global strategy of the reduction is to allocate,
for each color class j ∈ [k], 2t special points in the
polygon αj1, . . . , α

j
t and βj1, . . . , β

j
t . Placing a guard in

αji (resp. βji ) shall correspond to picking a 2-element

whose first (resp. second) component is aji (resp. bji ).
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Figure 1: Interval gadgets encoding {p1, p2, p3},
{p2, p3, p4, p5}, {p4, p5}, and {p4, p5, p6}.

The points αji ’s and βji ’s ordered by increasing y-

coordinates will match the order of the aji ’s along ≤A
and then of the bji ’s along ≤B . Then, far in the hori-
zontal direction, we will place pockets to encode each
A-interval of SA, and each B-interval of SB (see Fig-
ure 1).

The critical issue will be to link point αji to point

βji . Indeed, in the Structured 2-Track Hitting
Set problem, one selects 2-elements (one per color
class), so we should prevent one from placing two
guards in αji and βji′ with i 6= i′. Due to a techni-

cality, we will introduce a copy αji of each αji . In each
part of the gallery encoding a color class j ∈ [k], the
only way of guarding all the pockets with only three
guards is to place them in αji , α

j
i , and βji for some

i ∈ [t]. Hence, 3k guards will be necessary and suffi-
cient to guard the whole P iff there is a solution to the
instance of Structured 2-Track Hitting Set.

We now sketch the construction.

Allocated points and interval gadgets. The posi-
tion of the αji ’s and βji can be seen on Figure 2 and

Figure 4. It is such that the ordering of the αji ’s

(resp. βji ) by increasing y-coordinate matches the or-

der ≤A on the aji ’s (resp. ≤B on the bji ’s). Also,

αji and βji shares the same x-coordinate for each
j ∈ [k], i ∈ [t]. There is a quite large gap D along
the x-axis between a point αjt and αj+1

t .

For each A-interval Iq = [aji , a
j′

i′ ] ∈ SA, we put, at

a very large distance F to the right of the αji ’s, one
triangular pocket P(zA,q) rooted at vertex zA,q and

supported by ray(zA,q, α
j
i ) and ray(zA,q, α

j′

i′ ). This

way, the only αj
′′

i′′ seeing vertex zA,q are all the points

such that aji ≤A aj
′′

i′′ ≤A aj
′

i′ (see Figure 1 and Fig-
ure 4). We do the same for the B-intervals.

Weak linkers. We now describe how we link each
point αji to its associate βji . See Figure 2 for a de-
scription of the following weak linker gadget.

For each j ∈ [k], let us mentally draw ray(αjt , β
j
1)

and consider points slightly to the left of this ray
and quite far. Let us call Rjleft that informal re-

gion of points. Any point in Rjleft sees, from right

to left, in this order αj1, αj2 up to αjt , and then,
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Figure 2: Weak point linker gadget.

βj1, βj2 up to βjt . In Rjleft, for each i ∈ [t − 1], we

place a triangular pocket P(cji ) rooted at vertex cji
and supported by ray(cji , α

j
i+1) and ray(cji , β

j
i ). We

place also a triangular pocket P(cjt ) rooted at cjt sup-
ported by ray(cji , β

j
1) and ray(cji , β

j
t ). We place mir-

roring pockets P (dj1), . . . ,P(djt ) in the region slightly

to the right of ray(αj1, β
j
t ) and quite far. Finally, we

add a thin rectangular pocket Pj,r to the left of the

points αj1, . . . , α
j
t such that the uppermost longer side

of the rectangular pocket lies on the line `(αj1, α
j
t )

(see Figure 2). We denote by Pj,α,β the set of pockets

{P(cj1), . . . ,P(cjt ),P(dj1), . . . ,P(djt )} and call it weak
linker.

If one wants to guard Pj,α,β with only two points

and place the first guard on αji , one is not forced to

place the second guard on βji , as we would desire, but

anywhere on an area whose uppermost point is βji (see

the shaded areas below the bji ’s in Figure 2).

Linkers. For each j ∈ [k], we allocate t points
αj1, . . . , α

j
t on a horizontal line above and to the right

of βjt at a quite large distance. We add two weak
linkers Pj,α,α and Pj,α,β , one linking αj1, . . . , α

j
t and

αj1, . . . , α
j
t , the other linking αj1, . . . , α

j
t and βj1, . . . , β

j
t

(see Figure 3). We also add a thin horizontal pocket
whose lowermost side is in the same line as the points
αj1, . . . , α

j
t . Pockets of Pj,α,α and the two thin rect-

angular pockets force to put guards on αji and αji (for
a same i ∈ t), if we have only two guards to spare.
Now, pockets of Pj,α,β forces to place the third guard

below βji while pockets of Pj,α,β forces to place the

third guard above βji (again if we have only three
guards to spare). So, the only solution is to place the
third guard exactly on βji . The k linkers are placed
accordingly to Figure 4.

Lemma 4 ∀j ∈ [k], ∀i ∈ [t], the three associate
points αji1 , αji2 , βji3 guard entirely Pj iff i1 = i2 = i3.

Figure 3: Point linker gadget: a triangle of (three)
weak point linkers.
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Figure 4: The overall picture of the reduction with
k = 3.

4 Vertex Guard

The reduction is again from Structured 2-Track
Hitting Set.

Vertex linkers. For each j ∈ [k], permutation σj
is encoded by a sub-polygon Pj that we call vertex
linker, or simply linker (see Figure 5). We regularly
set t consecutive vertices αj1, α

j
2, . . . , α

j
t in this order,

along the x-axis. Opposite to this segment, we place
t vertices βjσj(1)

, βjσj(2)
, . . . , βjσj(t)

in this order, along

the x-axis, too. The βjσj(1)
, . . . , βjσj(t)

, contrary to

αj1, . . . , α
j
t , are not consecutive. We put reflex vertices

in between the vertices βjσj(1)
, . . . , βjσj(t)

to ensure that

the only way of seeing entirely the walls djej and xjyj

by taking two vertices αji and βji′ is that i = i′.

Lemma 5 For any j ∈ [k], the sub-polygon Pj is seen
entirely by {αjv, βjw} iff v = w.

What we should now prevent is that one puts a
guard in a reflex vertex of the linker.

Filter gadget. The only way to see all the pock-
ets of the filter gadget Fj (see Figure 6) with two
guards is to place them on ci and di for the same i.
In the overall construction, the ci’s are in fact ver-
tices βjσj(1)

, . . . , βjσj(t)
. Thus, if one wants to guard
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Figure 5: Vertex linker gadget. We omitted the su-
perscript j in all the labels. Here, σj(1) = 4, σj(2) =
2, σj(3) = 5, σj(4) = 3, σj(5) = 6, σj(6) = 1.

all the pockets of Fj and Pj with only three guards,

one should place them at vertices αji , β
j
i , and djσj(i)

.

d1
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d3d4
d5

d6

x1x2x3x4x5x6

c1 c2 c3 c4 c5 c6

y1

y2

y3
y4
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Figure 6: The filter gadget Fj .

Overall construction. Permutation σ is encoded in
the way depicted on Figure 7 by limiting the visibil-
ity of the vertices βjσj(1)

, . . . , βjσj(t)
to only one filter

gadget, namely Fj . Finally, as for the point guard
variant, for each A- and B-interval, we place a tri-
angular pocket seeing the corresponding vertices (see
Track 1 and 2 of Figure 7).
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