
EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Trash Compaction

Hugo Akitaya∗ Greg Aloupis∗ Maarten Löffler† Anika Rounds∗

Abstract

Let P be a set of n objects on a square grid. A
push is a transformation of P that involves sweep-
ing a horizontal or vertical line by one unit, starting
from the hull of P , displacing objects in the direc-
tion of the sweep. For example, when pushing to the
right, all the leftmost objects are displaced one unit to
the right. This in turn displaces other objects further
right. Given P , we want to find a sequence of pushes
that will produce a rectangle of a given height and
width. We show that deciding whether a square can
be produced is NP-hard, but it takes polynomial time
to decide if a rectangle of height 2 can be produced.

1 Introduction

There is a rich history in computational and combi-
natorial geometry on packing unit squares as tightly
as possible into various domains. In 1975, Erdös and
Graham asked how many unit squares may be packed
into a square of given dimensions, allowing arbitrary
rotations [6]. This sparked a string of results [8], as
well as new questions and variations. Of particular
interest is the version where unit squares are not al-
lowed to rotate [7]. The problem has recently been
shown to be NP-complete when the domain is a rec-
tilinear polygon with half-integer side lengths [5, 10].

Pushing objects is a vital task in certain mo-
tion planning settings with obstacles. Dhagat and
O’Rourke first considered the problem of pushing
square obstacles on a grid [4]. Many versions of the
problem are NP-hard [3], in particular various popu-
lar games involving pushing blocks. Recently, the mo-
tion planning community has shown interest in con-
trolling configurations of objects using only global in-
teractions, motivated from swarm robotics [1, 2].

In this paper, we consider the trash compaction
problem: given a set P of n objects (pieces of trash)
at integer coordinates in the plane, can we we push
them into a more compact configuration using only
axis-aligned global push operations? In each of the
four cardinal directions, we can perform a push oper-
ation on P . This involves sweeping a line in the given
direction by one unit. Any object swept by the line is
displaced, thus moving to the next integer coordinate.
If another object occupies that coordinate, it is also

∗Tufts University, Medford, MA, USA
†Utrecht University, The Netherlands

displaced by one unit, etc. An example of a left push
is shown in Figure 1. We focus on pushing objects
into rectangular configurations. Trivially, this cannot
always be done, as shown in Figure 1c.

(a) (b) (c)

Figure 1: (a) Configuration of objects. (b) Configura-
tion after a left push. (c) Configuration that cannot
be pushed into an axis-aligned square.

1.1 General observations

There are some characteristics of this problem that
we use in the proof of the main results in this paper.
Due to space constraints, some proofs are omitted;
they can be found in the full version.

If we are interested in pushing a configuration into
a rectangle with dimensions k × n

k , then trivially we
require that k divides n.

Observation 1 Suppose that a push causes j objects
to be displaced within a row. This is equivalent to
moving the first object to the closest available empty
space in the row, j positions away.

Observation 2 Pushing horizontally (resp. verti-
cally) cannot decrease the number of objects in any
column (resp. row).

Observation 3 If any column contains more than k
objects, or any row contains more than n

k objects,
then it is not possible to produce a k × n

k rectangle.

In general, pushing horizontally then vertically is
not equivalent to pushing vertically then horizontally
(consider switching the last two pushes in Figure 2).

(a) (b) (c) (d) (e)

Figure 2: Four pushes to create a square.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

32nd European Workshop on Computational Geometry, 2016

Lemma 1 Pushing left then right is equivalent to
pushing right then left.

Lemma 2 Suppose a configuration occupies exactly
k rows (not necessarily consecutive). Then if a rect-
angle of dimensions k × n

k can be created, one way
to do so is to push left until the configuration occu-
pies n

k consecutive columns, then push down until the
configuration occupies k consecutive rows.

2 Pushing into any rectangle

We show hardness of a restricted version of the
problem, where only top and left pushes are allowed.
Then we extend the result for the original question.
Our reduction is from Exact-Hitting-Set (which
is NP-hard [9]): Given a set S = {1, . . . , n}, and m
sets S1, . . . , Sm, each a subset of S, decide if there is
a subset S′ ⊂ S of exactly k elements, such that each
Si has exactly one element in common with S′.

Construction. We build a rectangle with dimensions
Θ(nm)×Θ(n+m). We fill this rectangle with objects,
except for several empty holes. We then place the
same number of objects as is needed to fill all the
holes, above and to the left of the construction, in such
a way that any sequence of top and left pushes that
correctly fills the holes must correspond to a solution
for Exact-Hitting-Set. To make the proof easier
to follow, we color the objects that start outside the
main rectangle. Figure 3 is an example for n=4, m=3,
k=2. S1={1, 3, 4}, S2={1, 2, 3}, S3={3, 4}.

(a) n=4,m=3, k=2. S1={1, 3, 4}, S2={1, 2, 3}, S3={3, 4}

(b) S′={2, 4}

Figure 3: Reduction from Exact-Hitting-Set. For
a larger copy with labeled regions, see the full version.

For our description, we use the convention de-
scribed in Observation 1. There are eight main
regions of the rectangle in which we insert holes.
The upper-left Staircase region contains n horizontal
holes, each of length m. To the right of the Staircase
are three big holes: Green-triangle, Green-overflow
and k-check. To the bottom of the Staircase is a
big hole called Red-triangle, followed by a region
of small holes called Hit-check and two big holes:
Red-overflow and Yellow-buffer. The Staircase is nm
wide and n tall. We consider that S is arbitrarily
ordered and the i-th element (i ∈ {1, . . . , n}) is
represented by a hole of height 1 in the i-th row
of the Staircase ranging from column (i−1)m+1
to im. The Green-triangle and Red-triangle are
(n−1)m wide and n−1 tall and the difference of the
number of empty columns between adjacent rows is
m. The Green-overflow, k-check, Red-overflow and
Yellow-buffer are rectangular holes of dimensions
n × (n−k+1)m, n×m, 1×nm and k×nm, resp. In
the Hit-check region, make an n×m matrix of holes
encoding the sets Sj . Each row represents a set.
One element is represented by m columns. If the
i-th element of S is in Sj , row i has a 1×1 hole
in column (i−1)m+j. Outside the rectangle, right
above the Staircase, place a k × nm rectangle of
yellow objects. Right above, place n rows of red
objects, each containing m less objects than the
previous (starting with nm). Above the k-check
region, place a k ×m rectangle of yellow objects. To
the left of the Staircase, place n × (n−k+1)m blue
objects. To the left of the i-th row of blue objects,
place nm−(i−1)m green objects. To the left of the
i-th row of the Hit-check region add |Si| − 1 blue
objects. Finally, to the left of the Red-overflow, add
1× (n−k+1)m blue objects.

Correctness. First consider that the hitting set
problem has a positive solution S′. We convert S′

into a sequence of moves that result in a rectangle.
For i ∈ {1, . . . , n}, if the i-th element of S is in S′,
left-push m times then down-push once. If the i-
th element of S is not in S′, down-push once then
left-push m times. Left-push (n−k+1)m times then
down-push k times. This sequence will fill the holes
in the Staircase corresponding to elements in S′ with
green objects and other holes with red objects. The
Green-triangle and Red-triangle are filled with green
and red objects respectively. The Green-overflow will
be filled mostly with blue objects. Since |S′| = k, ex-
actly n−k rows of the Green-overflow will contain m
green objects and, therefore, the k-check hole is filled
with n−k rows of blue and k rows of yellow objects.
Because S′ hits each subset exactly once, the objects
to the left of the Hit-check and Red-Overflow will fill
the holes that are not filled with red objects. Thus,
this sequence compacts all objects into a rectangle.

EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Now, consider that there exists a sequence that
results in a rectangle. The k-check hole can only be
filled by yellow and blue objects and, since yellow
objects can only be pushed into the rectangle after all
red objects, there must be n−k rows completely filled
with blue objects in the k-check hole. That implies
that each hole in the Staircase can only be filled with
objects of the same color (either green or red) and
that exactly k such holes are filled with green objects.
Holes in the Hit-check region can only be filled with
red or blue objects. A hole in such a region is filled
with red objects only if the hole directly above it in
the Staircase is filled with green objects. Since there
are |Si|−1 blue objects to the left of the i-th line,
exactly one hole in each line must be filled with a red
object. Therefore, the set S′ of holes filled with green
objects in the Staircase corresponds to a solution to
the Exact-Hitting-Set instance.

Four-sided trash compaction. The reduction can
be adapted to the model that allows pushes from all
four cardinal directions. We remove one object from
the top-left of the rectangle and add a blocker object
at the bottom-right of the construction, which will
prevent us from pushing from the right or bottom,
because it would cause a row or column to become too
long. However, once we resolve all pushes from the top
and left, one top push and one left push incorporate
the blocker filling the gap at the top-left corner.

Theorem 3 Given a configuration P of n objects,
and two integers w and h, deciding whether P can be
pushed into a w × h configuration is NP-hard.

Corollary 4 Deciding if a configuration can be
pushed into a

√
n×
√
n configuration is NP-hard.

3 Pushing into a rectangle of height 2

It is trivial to decide if P can be pushed into a sin-
gle row. This can be done if and only if each column
contains at most one element. To decide if P can be
pushed into a rectangle of height 2 requires more ef-
fort, even if P initially occupies only three rows. Let
r1, r2, and r3 denote the number of elements in the
top, middle, and bottom rows respectively. We can
trivially check in linear time whether any row con-
tains more than half of the objects; if so, we report
that no solution is possible. We now assume there are
at most n/2 objects per row. Suppose that P occupies
m columns and assume that the input is not trivial.
(See Observation 3 and Lemma 2.) Since we want to
compress the configuration into a rectangle of width
n
2 , we perform at most m− n

2 (i.e., at most n
2) horizon-

tal pushes. Notice that we will push vertically exactly
once. As soon as that happens, by Lemma 2, it is triv-
ial to check if a rectangle can be formed. Without loss

of generality, we may assume that we are never push-
ing up, since we perform at most one vertical push.
We need to determine the number of left pushes and
the number of right pushes that should be performed
before the single vertical push. By Lemma 1, we can
perform those left and right pushes in any order. Thus
we characterize each potential solution by its push sig-
nature (`, r), where ` is the number of left pushes and
r is the number of right pushes. Since ` + r ≤ n, we
can simply try all possible push signatures with these
constraints, of which there are a quadratic number.
Checking if a push signature is feasible takes amor-
tized constant time by maintaining, for each row, a
pointer to the last empty space in the configuration,
so this would yield a total time complexity of O(n2).

Consider a push signature G = (`, r), after perform-
ing ` left pushes and r right pushes. G is feasible if
there is no column containing 3 objects. G is conform-
ing (resp. sub-conforming) if the number of columns
where there are two objects in the top two rows is
equal to (resp. less than) (r1 + r2 − r3)/2.

Lemma 5 A configuration of n objects can be com-
pressed into a 2 × n

2 rectangle iff there exists a push
signature (`, r) that is both feasible and conforming.

Now, we introduce the feasibility diagram. It is a
2-dimensional matrix where the number of left pushes
and the number of right pushes are on the axes (see
Figure 4). We mark the feasible cells.

R

L
(b)(a)

Figure 4: (a) A configuration (n1=5, n2=6,n3=7) and
(b) its feasibility diagram. The vertical axis is the
number of right pushes, and the horizontal is the num-
ber of left pushes. The ×’s represent a computed fea-
sibility push signature, where green is ‘feasible’ and
red is ‘not feasible’. The green shaded region shows
the region of feasibility, which is all points below the
staircase outlined by the computed feasible points.
The blue ◦’s mark a conforming push signature.

Lemma 6 Any cells below and to the left of a feasible
cell are also feasible.

Proof. Let a feasible cell have coordinates (`, r). If
(`−1, r) were not feasible, we could take that config-
uration and push left to produce a feasible configura-
tion. This means that we would have decreased the

32nd European Workshop on Computational Geometry, 2016

number of elements in a column, which is not possi-
ble by Observation 2. Therefore (`−1, r) must also be
feasible. The same applies to (`, r−1). �

This property implies the Pareto-maximal cells form
a staircase. We also mark the conforming cells,
which form a x, y-monotone path. Finally, we check
whether there is any feasible conforming cell.

Computing the feasible cells. A column of height
3 can only be created where an empty space is, and
therefore, by keeping track of these spaces, we do
not need to search the entire configuration every
time we push. Using this fact, we can compute the
feasibility of all push signatures that consist of only
left or only right pushes in linear time, which will
give us a maximum number of right and left pushes
that are feasible. Given the maximum number R
of right pushes that yield a feasible solution, we
can then begin constructing the staircase; refer to
Figure 4. We know that (0, R) is feasible. If pushing
left from the resulting configuration still yields a
feasible solution, we note that (1, R) is also feasible
and continue. If pushing left is non-feasible, we
decrement the number of right pushes we make, and
see if pushing right that many times and then pushing
left once yields a feasible solution. The crucial point
is that we can test this in constant time, even though
we cannot “unpush”, by using the above observation.
We continue in this way until we have drawn out a
staircase in our diagram. By Lemma 6, we will char-
acterize all feasible cells in the diagram in linear time.

Computing the conforming cells. After each push
we add one element to one column for each row,
which means that we can keep track of the num-
ber of columns we add elements to in constant time
per push. At each push, we maintain the number
of columns with two elements in the following way.
If there is a column with one element in the mid-
dle row and one in the bottom row, then any push
down will not change the number of elements in the
resulting rows for this column. If there is a column
with one element in the top row and one in the bot-
tom row, then the same is true. However, if there
is a column with one element in the top row and
one element in the middle row, then when we push
downward, the element from the middle row will be
displaced into the bottom, and the element from the
top row will be in the resulting top row. At each
push, we maintain the number of columns that have
a top-middle configuration, as well as the number of
columns with the bottom-middle and top-bottom con-
figurations. The number of top-middle configurations
tells us how many objects will be added to the bot-
tom row upon pushing, which will give us the point
at which a push signature is conforming.

Any push-signature representing a solution will lie

in the intersection of the conforming and feasible re-
gions of the diagram. We compute both sets in linear
time, and check if their intersection is empty.

Theorem 7 Given any configuration P of n objects
that occupy at most 3 rows, we can decide in O(n)
time whether P can be pushed into a 2× n

2 rectangle.

3.1 Rectangles of height k

The brute-force O(n2)-time algorithm easily extends
to rectangles of height k > 2. A solution now consists
of exactly k−2 vertical pushes, and a number of left
and right pushes between pairs of vertical pushes. We
can encode this by a sequence of k−2 push signatures;
since there are at most n2(k−2) such sequences.

Theorem 8 If P has n objects occupying at most k
rows, we can decide in O(n2(k−2)) time whether P can
be pushed into a 2× n

2 rectangle.

References

[1] A. Becker, E. Demaine, S. Fekete, and J. McLurkin.
Particle computation: Controlling robot swarms with
only global signals. In ICRA, pages 6751–6756, 2014.

[2] A. Becker, E. Demaine, S. Fekete, S. M. Shad, and
R. Morris-Wright. Tilt: The video. designing worlds
to control robot swarms with only global signals. In
Proc. 25th Multimedia Exp. Comp. Geom., 2015.

[3] E. D. Demaine, M. L. Demaine, M. Hoffmann, and
J. O’Rourke. Pushing blocks is hard. CGTA,
26(1):21–36, 2003.

[4] A. Dhagat and J. O’Rourke. Motion planning
amongst movable square blocks. In Proc. 4th CCCG,
pages 188–191, 1992.

[5] D. El-Khechen, M. Dulieu, J. Iacono, and N. van
Omme. Packing 2x2 unit squares into grid polygons
is NP-complete. In Proc. CCCG, pages 17–19, 2009.

[6] P. Erdös and R. Graham. On packing squares with
equal squares. J. Comb. Theory, 19:119–123, 1975.

[7] R. Fowler, M. Paterson, and S. Tanimoto. Optimal
packing and covering in the plane are NP-complete.
Information Processing Letters, 12(3):133–137, 1981.

[8] E. Friedman. Packing unit squares in squares: A
survey and new results. The Electronic Journal of
Combinatorics, 2009.

[9] M. R. Garey and D. S. Johnson. Computers
and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[10] A. van Renssen and B. Speckmann. The 2x2 simple
packing problem. In Proc. 23rd CCCG, 2011.

